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intugent

The scientific Artificial Intelligence & Digitalization Company

Core Capabilities

Scientific Artificial Intelligence (sAl)
Material Science

Process Simulation

Data Sciences

Information Technology

Intugent Edge

TDroven Track Record

Commercialized
(DWP) for multi-
billion S companies

Excellent User Experience

Value Creation

Reduced developmental costs & times
Success at the 15t commercial trial
Higher quality innovations

New application domains

Simpler Digital Work Process (DWP)

Users do not need any
background in Al or Math
Modelling

1/19/2026

scientific Artificial Intelligence Superb User Support

Pioneered sAl. Combines
science and Al. High powered client’s process. In house
computers are not needed

Each DWP is tailored to

SME’s in all core capabilities
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" Grand Challenges to Composite Growth

* Development of a Sufficiently Skilled Workforce
* Reduction of Developmental & Cycle Times
* Expansion of Knowledge and Tools (Modeling, ...)

e Advancement of the Performance Materials

Original designed by Freepick.com

* (FIBERS Consortium Study 2019, Funded by NIST)

1ntugent 1/19/2026 :
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¢ Predictive Models, Intuition and Gut Feeling

» Rational / Mathematical Analysis

— Require long times to obtain predictions

* Intuition / Gut Feeling
— Near instantaneous subconscious processing

— Rooted in years of personal experience, knowhow,
and imagination

Original designed by Freepick.com

ntu gent 1/19/2026 s



4 Overview
1. Introduction to Digital Transformation
and Artificial Intelligence

2. Neural Networks — Development and
Applications

3. Case Studies

4. Other Digitalization Techniques (Scaleup
Models

ntu AL [ 1/19/2026



Part 1
Introduction to Digital

Transformation
& Artificial Intelligence

intu AL [ 1/19/2026

Arthur Samuel
at IBM coined the term
“machine learning” way
back in 1959, just a few

years after Alan Turing
started talking “artificial
intelligence.”

Hold on.

If machine learning
has been around that
long, why is it such a

buzzword now?

https://cloud.google.com/products/ai/ml-comic-1



-+ Digitalization and Digital Work Process

* Digitization \ Innovation

— Collection of data in digital form as it is being generated \ Velocity
* Digitalization Digital

— Artificial Intelligence Work Pr. \\\.\

— Science based math models \\

— Process simulation Digitalization \\\

— Databases and Visualization \\\

A\

* Digital Work Process .

— Intuitive, user experience / DI

— Shorten the work process

1ntugent 1/19/2026 :



4 Digital Transformation:- Development and Implementation

3. Digitalization (Al/sAl)

2. Digitalization: Low
Hanging Fruits

- Collect data as it is being
generated

- Develop Al/sAl models

. - Collect data as it is being - Use Al/sAl models in
1. Digital Work Process generated predictive mode (virtual
_ - Available Statistical and ElY)

- Based on the existing work Math models for - Prescriptive mode or

process predicting properties reverse engineering is
- Collect data as it is being - Process simulation models optional

generated - Groundwork for Al/sAl

models

1ntugent 1/19/2026



»;ﬁ Materials Paradigm / Process Domain

Property Prediction Models

* Predict properties after
Composite Properties reactions are complete (lab or
commercial scale)

* * Al & Math Models

Manufacturing Process
' * Can we complete processes
Mol. Structure Rheology / Materlfal PIete p
o2 Properties under commercial
___ &Network | Vitrification application conditions

Engineering Balances (Time-Temp.)
* Rheokinetic scaleup models

Process Simulation Models

1ntugent 1/19/2026 :



\’/ Predictive Models

Statistical Models

Scientific Math Models
— Scaleup Models

Artificial Intelligence Models

Scientific Artificial Intelligence Models

“You will never catch your tail. But the selfie
of you chasing your tail will go viral.”

Comic by Harley Schwadron
https://jokes.scoutlife.org/topics/fortune-teller-jokes/

intugent 1/19/20%6 10



¢ Statistical Models

* Linear Regression

Y=mX+¢C
— m and C are obtained by minimizing

SSE=E =X —)*

https://algogene.com/community/post/111

* Multiple Linear Regression

N

Y=C0+C1X1+C2X2 +C3X3 + -
More on Regression later

intugent 1/19/20%6 "



Machine learning is a sub-field of artificial intelligence, right?

Along with
image recognition,
language processing,
recommenders,
self-driving cars,
and... uh...

Artificial Intelligence e

Taunting Keanu

& Reeves...??
Machine Learning

You got the

https://cloud.google.com/products/ai/ml-comic-1

intugent 1/19/20%6 12



? Artificial Intelligence & Machine Learning

* Artificial Intelligence

— Simulation of human intelligence

 Generative Al

— Generate new content
— ChatGPT, Copilot, DeepSeek, Dall-E

— Al agents such as Alexa, Gemini, ...

Machine
Learning

* Machine Learning

— Development of algorithms/computer programs
capable of learning from data and making
predictions

q)n tu géen t 1/19/2026 13



4 Type of Machine Learning

ntu g ent 1/19/2026
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Machine Learning — Unsupervised Learning

h‘

e How does it work

- The datapoint does not contain any label or Uniabeled Training Data
output value

- The model identifies pattern or grouping

— Abnormal patterns are identified

e Applications

— Customer segmentation

— Anomaly detection

https://datamapu.com/posts/ml_concepts/supervised_unsupervised/

— Cyber security

intugent 1/19/20%6 15



{ Machine Learning — Reinforced Learning

e How does it work

— An agent or robot is programmed to perform

a task |
. . o L] ‘* :ngg:rf'lltnm:;
— Feedback from environment provides Reinforcement Learning
reinforcement e

- +ve reinforcement increase the frequency of
the behavior

- -ve reinforcement decrease the frequency of | :
the behavior Environment

.
* Applications 1 Action |

— Robotics

https://www.projectpro.io/article/types-of-machine-learning/623

— Self-driving Automobiles

- Video Games

intugent 1/19/20%6 16



4 Machine Learning — Supervised Learning

e How does it work

— A datapoint contains input data and output
(label, target) value

- A known dataset is used to learn relationship
between input and output

- Model is then used to predict output given
the input
* Applications
- Image classification
— Medical diagnosis
— Speech recognition

— Predicting continuous values such as stock
prices, house prices, and material properties

intu AL [ 1/19/2026

Labeled Training Data

Training

https://datamapu.com/posts/ml_concepts/supervised_unsupervised/

17



7 Supervised Machine Learning

- -
> Algorithm > Logic (Model) =——
_ Logic N PE)edlcted
Output (Model) utput
Input I t
> I (Target) e
Training / Learning Prediction

i ntu g ent 1/19/2026 18



,@ Types of Supervised Machine Learning

e Output is discrete or categorical * Qutput is Continuous
* Examples * Examples
— Spam/no spam, — Risk assessment,
— Image classification — Stock market
— Diagnostics - Material properties
?H tu g ent 1/19/2026

e
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N

—

Supervised Learning: Regression

e Artificial neural networks
e Decision Tree
e Random Forest Ensemble

* Genetic Algorithms

1ntugent 1/19/2026
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& Genetic Algorithms

Crossover
Initialize Population Parent 1 ﬂ‘

—pnopEnEe
Fithess Assignment

Parent 2 nﬂﬁl Offspring

Stopping
Criteria

Mutation

Before Mutation After Mutation

EEEOEBEE EENOE0En

https://www.geeksforgeeks.org/genetic-algorithms/

Limited Application
— Robotics, self driving, financial modelling
— Primarily used to fine tune parameters of other machine learning
methods such as neural networks

“l, ntu g ent 1/19/2026 21




¢ Decision Tree / Random Forest Models

Dataset | ﬁﬁ
K

Color == yellow

True

HI;!I_EIh.l 107 Height<107?

Decision Tree-1 Decision Tree-2
True

l = o False
Result-1 Result-2 N True

e
Majority Voting / Averaging L*|

¥

Final Result

DOI:10.3390/w13040547 https://algogene.com/community/post/111

* A continuous variable being treated as discrete variable?

intugent 1/19/2026 2



WE DON'T KNOW HOW IT WORKS,
BUT IT KNOWS EVERYTHING!!!

Part 2

Neural Networks

https://medium.com/@priyadharshini.18nov/how-to-make-art-with-ai-and-
neural-networks-42f6bb751416

intugent 1/19/20%6 2



{ Neural Networks
* Highly robust method for approximating real value
problems

 Method inspired from neurons and behavior of brain

* Very good at approximating complex functions and
relationships

e Based on simple mathematical formalism

* Applications
— Facial recognition
— Stock market predictions

— Material properties

intu AL [ 1/19/2026

OH, HEY, YOU ORGANIZED
OUR PHOTO ARCHIVE!

YEAH, T TRAINED A NEURAL
NET TO SORT THE UNLABELED
PHOTOS INTO EHTEGDEIES

WHOA! NICE LIOEK!

By

ENGINEERING TiP:
UHEN YOU DO A TASK BY HAND
YoU CAN TECHNICALLY SAY YOU
TRANED A NEURAL NET To DO IT.

https://www.explainxkcd.com/wiki/index.php/2173: Trained a_Neural Net

24


https://www.explainxkcd.com/wiki/index.php/2173:_Trained_a_Neural_Net

\,’\ Neural Networks — Building Blocks

Input 1st Hidden 2nd Hidden Output
Layer Layer Layer Layer

e Each dotis a neuron

* Each line represents a link

‘ (dependence), w, that is
estimated during training

* Any number of hidden
layers can be used

* Xy Xy, X3 ... Xy a@re input
variables

1ntugent 1/19/2026 N
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4 Neural Networks — Mathematical Formalism

1= * Value of a neuron (for example 'h,) in a hidden layer is determined
Hidden

in two steps.

Layer

1. A new variable is defined as a linear combination of the all

3rd Neuron in the neurons in the previous layer
2" Hidden Layer

2. New variable is transformed through an activation function to
introduce nonlinear behavior

24 =2 2 2 2 2y 2 2 2
a3~ W3 g+ “W3 1904+ “W3,0, + “W3 303+ . . . + “W;3 | “Oy

205= g(%a;), g is the activation function

 Compare it to Multiple Linear Regression

A\

Y=CO+C1X1+C2X2+C3X3+'”

ntugent 1/19/2026
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4 Neural Networks — Activation Functions

Sigmoid RELU

1 ol o= 2 . _
9(z) = (2) = I g(z) = max(0, z)

l1+e2

Output Range Oto1l
Max. slope 0.25 1

Advantage Output layer for classification 0 centered, converge faster Suitable for deep learning,
problems Computationally simple

i n t” g en t 1/19/2026 27



-+ Neural Networks — Mathematics

l _ l [—1
a; = Z . Wi,j Oj
J)

‘o; = g( lai)

Input 1st Hidden 2nd Hidden Output
Layer Layer Layer Layer

‘o; = value of #" neuron in (™ layer

lwi,j = weight used in calculations of ® neuron in

layer to /" neuron of previous layer

» Calculations are performed for each neuron in the hidden and the output layers

* Ws are the unknown parameters that are estimated during training of the model

1ntugent 1/19/2026 .



-+ Neural Networks — Mathematics

l _ l [—1
a; = Z . Wi,j Oj
J)

‘o; = g( lai)

Input 1st Hidden 2nd Hidden Output
Layer Layer Layer Layer

‘o; = value of #" neuron in (™ layer

'w; ; = weight used in calculations of " neuron in /

th Jayer to " neuron of previous layer

» Calculations are performed for each neuron in the hidden and the output layers.

* Ws are the unknown parameters that are estimated during training of the model

1ntugent 1/19/2026 N



4 Neural Networks — Model Training

* Root Mean Square is most commonly used as
. . . Input 1st Hidden 2nd Hidden Output
measure of error or loss in eSt|mat|ng the values Layer Layer Layer Layer

of y
=5 (i = )
2N, i)’i Yi

* Object is to find values of Ws that minimize the
error (loss)

* Ws are the unknown parameters that are
estimated during training of the model

#of Ws = z ‘N ("IN +1)
l

N is # of neurons in Layer ¢

1ntugent 1/19/2026 0



-+ Neural Networks — Gradient Descent

* Change Ws in direction opposite to gradient 6

5

i dE \
wW=—a—-—

dw 5 .

* a is chosen to make a desired step change

- A very small a may increase # of iterations to get
to the solution o

- A very large a may result into oscillations and w
solution will not converge

 Calculations of ws and setting value of a are the most critical steps in model training solution

1ntugent 1/19/2026 .



‘,’\ Neural Networks — Back Propagation

* Forward propagation calculates the value for each
neuron, output and error for every data point

a; = Wij 0 oy =g('a;)

 Backward propagation calculates derivative of error
function for each data point to optimize sets of ws

OEF _ dg -1, z +1,,. _OE
0 lWi,j d lai J ; LT 9 l+1ai

ntugent 1/19/2026

Forward propagation

Input 1st Hidden
Layer Layer

2nd Hidden
Layer

Backward propagation

32

Output
Layer




1 Problem of Overfitting in Scientific Applications

| WENT FOR A LUNCH BREAK OH NO!
AND WHEN WHAT ARE YOU I'M NEVER

| CAME BACK MY MODEL GOING TO DO? GOING FOR Dr. A”en Genevera Of Rice

LUNCH AGAIN.

HAD OVERFIT!
\7/ GENIUS.. University says flawed

machine learning is producing
a '‘crisis in science”

\"

P. Gosh, [https://www.bbc.com/news/science-
environment-47267081, 16 Feb. 2019]

https://livebook.manning.com/book/grokking-machine-learning/chapter-4/

“Often these studies are not found out to be inaccurate until there's another real
big dataset that someone applies these techniques to and says ‘oh my goodness,

(11

the results of these two studies don't overlap’," she said.

l’ n t” g en [ 1/19/2026 33



Probl fO fitti
g . =S g Steve Lawrence and C. Lee Giles. Overfitting and Neural Networks: Conjugate Gradient and Backpropagation, International
[ J
Fu n Ctlon y - S I n (X) IS S h Own by d Otted Joint Conference on Neural Networks, Como, Italy, July 24-27, IEEE Computer Society, Los Alamitos, CA, pp. 114-119, 2000
MES

» 21 data points generated by adding
random noise

* The data points were fit using
polynomials or order 2, 10, 16, and 20

Y=c,+cix+cx?+...+¢c, X;3

* Underfit models do not show the right
trends

* In Overfit models, the model learns Order 16 Order 20
more about data than the trends. In Order 16
other words, the prediction between
the data points may be very erroneous.

# of Parameters 17

Degrees of Freedom 4

Fit Slightly Overfit  Overfit

intu gent 1/19/2026 3
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17 Model Accuracy: Validation Datasets

High Bias High Variance

 Hold-Out Validation

— Dataset is split into Training and Validation datasets

— Model is trained using Training Dataset and Error is
calculated

— Model is then run using Validation Dataset. Validation
Error should not be significantly higher than Training

Error
¢ K‘ FO I d C FOSS Va I |d atiO N Degrees of Freedom: Decreasing —p
- Th e 0 rigi n a | d ata Set iS S p | it i nto K # Of po rtio n S C;tlijs;{i/::}iizgzggg:i:;22;:::;1ine%ZOIearning/modeI%20tuning/python/ModeI-Tuning-with-

Validation-and-Cross-Validation/

* High Bias: error due to model’s inability to
learn from data

* High Variance: high validation error due to

- overfitting

Training Dataset. * Model complexity increases as number of

neurons and layers increase

intugent 1/19/20%6 55

— The training and validation process is repeated k times
— Each portion takes turn as Validation Dataset while the
remaining data portions are used as Training Dataset

— The model is finally trained with the original data as



7 Model Accuracy: Statistical Analysis

1. Degrees of freedom
Yy =Ng — Np
2. Sum of Squares of Total Error

SST = YV (y. — 3)2 STANDARD 2 STANDARD
— 21 i y 2 STANDARD 3 STANDARD 1 STANDARD 2 STANDAR
DEVIATIONS  DEVIATION  DeviaTIoN — PEVIATIONS

https://statistically-funny.blogspot.com/2013/04/dont-worry-its-just-standard-deviation.html

3. Sum of Squares of Residuals (Estimation Error)
SSR = Z’lvd (y; — 9)? 5. Coefficient of Determination
R?=1 — SSR/SST

4. Standard Deviation of Estimates
6. Prediction Interval (95% Confidence)

m L vy =9 +1965
A

* Regression statistics cannot take into account the effect of number of
iterations. Also, Eq. 6 should be applied to Neural Network with caution

i n t” g en [ 1/19/2026 36



;) New Trends in Al for Material Sci. Applications
I Scientific Artificial Intelligence (sAl)

* Each solid grey line
represents d Input Zeo 1st Hidden 2nd Hidden Output
parameter that needs Layer LBl Layer Layer Layer
to be optimized during
training

* sAl require smaller
datasets for training
while giving more
accurate trends

e |t can be used for new
materials before
collecting significant
data

c
o
=
©
S
o
L
oT0)
=
c
—
]
>
@]
O
O
N

Scientific Correlations

N ~ 100 N~ 10 N~ 10 N~ 10

i ntu g ent 1/19/2026 37



‘Y Different Types of Predictive Models

Artificial Intelligence (Al) Models High Science
— Based
Recipe Art|f|C|aI Properties Models
Intelligence 00
=
VT
& c
Science Based Models € o Scientific
g T Artificial
\, Formqlatlon Goverr)lng W arties ey Intelligence
Descriptors Equation | -
Artificial
. . I . Intelligence
INTUGENT APPROACH: scientific Artificial Intelligence (sAl) Models Low
i e s ' Low High
~_Formulation Artificial Governing T Data Required

Descriptors Intelligence Equation

Scientific Artificial Intelligence models combine science and Artificial Intelligence. They require
relatively smaller datasets and predict more accurate trends

‘l, ntu g ent 1/19/2026 38



Part 3

Case Studies

intugent

1/19/2026

THIS 1S YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTHER SIDE.

WHAT IE THE ANSLERS ARE LJRONG? )

JUST STIR THE PILE UNTIL
THEY STPRT LOOKING RIGHT

https://cloud.google.com/products/ai/ml-comic-1

39



v/ CS1: Fire Resistance of FRP-Strengthened Concrete Beams

(Bhatt et. al., https://doi.org/10.1016/j.dib.2024.110031)

. . . Ten.
D gy Area Conc. Area Area Thick | Height | Mod Yield. Mod. Str. Mod. T, Th. Cond. Heat Cap. Load Loa.d De.ﬂec-
Conc. Cover | Steel FRP Ins. Ins. Conc. Str. Steel Steel FRP Poly. Ins. Ratio tion
(m) (mm’) | (mm) | mm® | (mm? | (mm) | (mm) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) °C (WmK) | J/°Cm’) kN (%) (mm)

Bl 3 60000 25 402.1 0 0 0 47.6 591 205000 0 0 0 0 0 61.2 44.8 -55.81

B2 3 60000 25 402.1 0 0 0 45.5 591 205000 0 0 0 0 0 61.2 44.8 -48.67

B3 3 60000 25 402.1 120 25 0 44.4 591 205000 | 2800 | 165000 52 0.175 730800 81.2 38.4 -57.12

B4 3 60000 25 402.1 120 40 80 47.4 591 205000 | 2800 | 165000 52 0.175 730800 81.2 38.4 -15.24

B5 3 60000 25 402.1 120 25 80 45.1 591 205000 | 2800 | 165000 52 0.175 730800 81.2 38.4 -26.64

B6 3 60000 25 4021 120 0 0 46 591 205000 1 2800 165000 52 0.175 730800 1.2 38.4 -31.7
B45 3.66 125730 38 603.2 173.4 0 0 42 440 210000 | 1034 73770 82 0 510000 98 51 -84 =
B46 3.66 125730 38 603.2 173.4 25 75 42 440 210000 | 1034 73770 82 0.156 510000 98 51 -65 =] Concrete
B47 3.66 125730 38 603.2 173.4 19 112 42 440 210000 | 1034 73770 82 0.156 510000 116 61 -108 B CFRP
B48 3.66 125730 38 603.2 102 32 152 46 460 210000 1172 96500 82 0.156 510000 97 51 -16 ¥
B49 3.66 125730 38 898 102 19 152 46 450 210000 | 1172 96500 82 0.156 510000 128 54 -30 Insulation

Compression rebar (top)
* 17 input variables, 49 data points and 1 replicate Tensile rebar (bottom)
o . Thermocouples (TC)
Must reduce the # of variables

Strain gauges (SG)

ntu gent 1/19/2026 20



)]

1 4

Variable Average |St. Dev. Coeff. Corr.
Length_m 2.86 1.23 -0.74
YieldStr_Steel Mpa 503.2 68.6 0.67
Area_Steel mm?2 319.9 276.8 -0.65
Load_kN 58.92 37.57 -0.60
Area_Conc_mm?2 55,170 38,228 -0.59
Depth_Insul_mm 119.7 156.6 -0.41
Cover_Conc_mm 21.08 8.15 -0.25
Thick_Insul_mm 21.71 16.23 0.24
Load_Ratio % 34.79 20.87 -0.23
TensileStr_FRP_MPA 2,125 1,167 -0.16
ThCond_Insul_W/m-K 0.12 0.15 0.13
Mod_Steel Mpa 200,304 29,352 -0.12
ThermCap_Insul_J/C-m3 441,291 321,903 0.11
Tg FRP_C 56.50 26.18 -0.06
Mod_FRP_MPA 160,978 134,564 0.06
Area_FRP_mm?2 67.83 71.95 0.05
Mod_Conc_Mpa 36.74 8.02 0.03

intugent ropaoz

' CS1: Fire Res. FRP-Conc. Beams — Deflection Time

200 300 400

Variables Used for Modeling
1. Length_m * Area_Conc_mm?2 as 'Volume_Conc'
2. [Load_kN]* [Load_Ratio_%] as 'Load*Ratio'

3. [Thick_Insul_mm]

4. [Cover _Conc_mm]

5. [YieldStr_Steel Mpa]




{ CS1: Fire Res. FRP-Conc. Beams — Model Convergence

20 * |ncrease in # of Neurons

18 — Increases # of parameters to be optimized

16 O - Decreases degrees of freedom

14 \ — Reduces root mean square error
12 " :
lterati — Initially decreases, but then increases standard
10 [terations deviation
5000

- Initially improves, but then reduces the quality
+;gggg of predictions

—
=]
=
=
Ll
v
=
o

* |ncrease in # of iterations

— Reduces root mean square error
3 4
— Reduces standard deviation

# of Neuronsin Layer 1

— Initially improves, but then may reduce the
quality of predictions as the model starts
remembering the points and not the trends

intu gent 1/19/2026 .



¢ CS1: Fire Res. FRP-Conc. Beams — Neural Network Model

o
£ T
= et
< [=8
£ =
£ £
3 :
2 s
9] $
= o
T —
S T
- o-

-100 -80 -60
Deflection_mm_Exp.

-100 -80 -60
Deflection_mm_Exp.

Total # of lterations 5000 Total # of lterations 20000

# of Hid. Layers =1
# of neurons =2
Deg. of Freedom =29

# of Hid. Layers =1
# of neurons =6
Deg. of Freedom =1

RMS Error  1.5661E+001

RMS Error  6.1089E+000

Coefficient of Determination (%) 9045 Coefficient of Determination (%)

standard Deviation of Estimates 20.564 Standard Deviation of Estimates

intu gent 1/19/2026 &



{ CS1: Fire Res. FRP-Conc. Beams — Model Cross Validation

Validation RMS Error with 1000 Iteration.

100

e Data was divided into 5 buckets
Data Bucket #

e * Each time, 4 out of 5 buckets were
: 3 used to train the model and the 5t
e 4 was used to validate the model

40

” * The graph shows the RMS Error
. ’ when each bucket was used to
validate the model

* In general, validation error increased
as number of neurons increased
(degrees of freedom decreased

# of Neuronsin Layer 1

intu gent 1/19/2026 2



{ CS1: Fire Res. FRP-Conc. Beams — Model Cross Validation

Training vs. Avg. Validation Error (1000 Iteration)

e Use the least # of neurons that can give
o— Avg. Validation RMS Error acceptable error

—&— Training RMS Error

* In general, there should be more than 3
data points for every adjustable
parameter

—
(=]
=
=

[WE]

w

=

o

* Stop training the model as convergence
slows down

* Use average Validation Error as guide for
model acceptance

# of Neuronsin Layer 1

intu gent 1/19/2026 25



~,’x CS2: Real Life Mfg. and Quality Data

Average St. Dev. Coeff. Corr.

* Objective: predict quality control 0568 0229  -0.397
1 1 0.432 0.236 -0.316
var!able (Y) using the process A e
variables (X1, X2, ..., X23) 0342 0146  -0.303
0.525 0.265 -0.302

. . 0.322 0.182 -0.297

e Data obtained from a real-life 0469 0263  -0.289
. oM 0.421 0.154 -0.283
manufacturing facility — T
0.444 0.192 0.225

5 0.551 0.191 0.211

e Data is scaled to the 0-1 range and T T
process variables names omitted for D5 T N0 -2 R 00

. e . 0.491 0.182 0.201
confidentiality 0.381 0.139 0.196
0.411 0.148 0.192

. ] . 0.418 0.187 0.070

e 23 input variables with Coeff. of 0399 0219  -0.058

0.400 0.219 -0.058

Correlation > 0.05 0.400 0.219 -0.057

0.385 0.197 -0.055
0.385 0.197 -0.055
0.389 0.195 -0.053

ntu gent 1/19/2026 26




{ CS2: Mfg. & Qual. Data — Training vs Validation Error

Iterations 5,000 10,000 15,000

Avg. Validation RMS Error @— Avg. Validation RMS Error ©— Avg. Validation RMS Error
: —&— Training RMS Error ’ ~—&—Training RMS Error

—&—Training RMS Error
@ @

@ o

\’\w

300 400 500 600 700 800
# of weight parameters in Training

RMS Error
RMS Error
RMS Error
[=] o
= =
N w

e
=
=

\\~

800 900

(=]
[
o

300 400 500 600 700 800 900 300 400 500 600 700
# of weight parameters in Training

# of weight parameters in Training

neurons were tried

* The gap b/w training and validation errors slightly
increased with # of neurons & # of iterations

e Data was divided into 5 buckets

* Each time, 4 out of 5 buckets were used to train the
model and the 5t was used to validate the model

* Two hidden layers with (10,8), (14,10) & (20, 15)

47

intu AL [ 1/19/2026



¢ CS2: Mfg. & Qual. Data — Model Training in Action

Real Time Screen Capture

23 input variables

2 Hidden Layers with 14 & 10
neurons

1713 data points
536 weight parameter to be trained
1177 degrees of freedom

After 1500 iterations
- 0.0957 RMS error
— 72.30 Coeff. of Determination
— 0.123 Std. Dev. of Estimates

ayers

Coeffic
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) CS3: Predicting Young’s Modulus of Elastomeric
’ Polyurethanes from the Material Recipe

Wide range of applications in Coatings, Adhesives, Sealants, and Elastomers

Experimental data is not available

Data was synthesized using the scientific math model developed by Ginzburg et. al.”

Each formulation contained up to five different Polyols, one Chain Extender, and one
Isocyanate

Three thousand different formulations were synthesized using 51 different polyols, 10
chain extenders, and 11 isocyanates with iso index of 100

* Ginzburg et. al., “Theoretical Modeling of the Relationship between Young’s Modulus and Formulation Variables
for Segmented Polyurethanes,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 45, 2123-2135, (2007).
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7 CS-3: Mod. of Flex. PU = Input Data

Table 1A: Polyols

VORANOL™ 1010 L
VORANOL 2000 L
VORANOL 2110-B
VORANOL 2110-TB
VORANOL 2120
VORANOL 2120 L
VORANOL 2120 P
VORANOL 2140
VORANOL 220-028
VORANOL 220-056
VORANOL 220-056 N
VORANOL 220-110
VORANOL 220-110 N
VORANOL 220-260
VORANOL 222-029
VORANOL 222-056
VORANOL 223-060 LM
VORANOL 230-112
VORANOL 4240
VORANOL B 2000
VORANOL EP 1900
VORANOL P 400
VORANOL P 4000
VORANOL WD 2104
VORANOL WD 2130
VORAPEL D3201

110.0

NNDNPNONDNNNONNNNNNDNNONNNDNNONNNMNNNONNNDNODDN

N

Table 1A: Contd.

VORANOL 1000 LM 112.0
VORANOL 2000 LM
VORANOL 222-028 LM
VORANOL 3000 M
VORANOL 3003 LM
VORANOL 4000 LM
VORANOL 8000 LM
POLYOL 355 UCB
VORANOL 2070
VORANOL 2100
VORANOL 230-042N
VORANOL 230-056
VORANOL 230-238
VORANOL 230-660
VORANOL 231-027N
VORANOL 232-028
VORANOL 232-034
VORANOL 232-034N
VORANOL 232-036N
VORANOL 2471
VORANOL 270
VORANOL 271C
VORANOL 410
VORANOL 450N
VORANOL 5055 HH

WWWWWWWWWWWwWwWwWwWwWwWwWwPMNDNMNDNMNDNMDNDNDN

Table 1B: Chain Extenders
| Name [ OH#|Func.| | Name | OH# | Func. @ Name | OH# [Func.]

1,4-BUTANEDIOL
2-ETHYL 1,3 HEXANEDIOL
DiethanoLAMINE
Diethylene Glycol

Ethylene Glycol
ETHACURE 100 (DETDA)

N

GLYCERINE - NATURAL
PROPYLENE GLYCOL
TRIETHYLENE GLYCOL
TRIMETHYLOLPROPANE

WNDNWNDNNWDN

Table 1C: Isocyanates
| Name | %NCO lm

Isophorone diisocyanate
ISONATE™ M 340 modified p
ISONATE OP 20 Pure MDI

ISONATE OP 30 Pure MDI

ISONATE OP 50 Pure MDI
PAPI™ 901

PAPI 95

PAPI 94 Polymeric MDI
PAPI 27 Polymeric MDI
PAPI 580N Polymeric MDI
VORANATE™ T80

Polyols selected from Customized options for a range of CASE applications, Dow website https://www.dow.com/en-us/product-technology/pt-

polyurethanes/pg-polyurethanes-polyols.html#tabs-1eal 9b782b-item-c0fd89c605-tab

intugent
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* |f these material are
directly used as
input, the input
layer will have at
least 72 neurons

* Dimensionality
reduction using
Formulation
Descriptors can
reduce the total
number of
parameters to be
trained
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\,’\ CS-3: Mod. of Flex. PU = Understanding Molecular Structure

* Elastomeric PU find various applications
in Adhesives, Coatings, Sealants &

Elastomers
& & 8 -~
1 .‘ —/
* Co-block polymer consists of hard and
soft segments 1. Spherical* 2. Cylindrical* 3. Gyroid* 4. Lamellar*
* K. Matyjaszewski and M. Muller, Polymer Science: A Comprehensive Reference, pp 129-140, (2012).
* A typical formulations consist of 1 or
more of each of polyols, chain extenders,
and Isocyanates as well as additives such
as surfactants, pigments, ...
e Hard segments phase separate. The * As hard segment concentration increases,
morphology primarily depends upon the they first phase separate to form Spherical,
formulation and Cylindrical, Gyroid, and Lamellar shaped

‘ domains
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\,’\ CS-3: Mod. of Flex. PU — Formulation Descriptors

1. Hard Segment Percentage
Key parameter in determining the phase separated structure and hence the modulus

* Hard Segment wt. = Isocyanate wt.+ Chain Extenders’ wt. + wt. OH group in Polyols
* Soft Segment wt. = wt. of Polyols — wt. of OH groups in Polyols

2. Solubility Parameters of Hard and Soft Segments
* |s a measure of cohesive energy = \/52 + 5129 + 5%
* Hansen solubility parameter provides a 3D framework

* Group contribution theory as outlined by Van Krevelen* was used

3. Glass Transition Temperatures of Hard and Soft Segments
* |s a measure of rigidity of molecular segments Tg — Z Wi Tg,i
* Group contribution theory as outlined by Van Krevelen* was used
* D. W. Van Krevelen and N. V., Arnhem, “Properties of Polymers, Their Correlation with

Chemical Structure, Their Numerical Estimation and Prediction from Additive Group
Contributions,” 4th Edition, Elsevier Amsterdam, ISBN 978-0-08-054819-7, (1989)
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4 CS3: Mod. of Flex. PU — Formulation Descriptors

4. Average OH # of Polyols - OH # = 56,100/Eq. Wt.
* Is a measure of Soft Segment length OH = z Wi OHi

* Calculated as weight averaged value

5. Average Functionality of Polyols W f
. Z LJL £
* |Is a measure of mobility of Soft Segments M. . fl
w,i
e Calculated as number of equivalents averaged value f —
Z Wi fl
MW [

1ntugent 1/19/2026
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,’ CS3: Mod. of Flex. PU - ModeITram[ngm Action

R&D-Ho mulations rop. Data | Properties & Data Files | sAl Home Page = sAl Data Analysis = sAl Model = Model Validation

Model Setup

7 input variables

2 Hidden Layers with 7 & 5 neurons
2990 data points

118 weight parameter to be trained
2872 degrees of freedom

After 6233 iterations.
- 0.638 RMS error
— 99.35 Coeff. of Determination
— 0.651 Std. Dev. of Estimates

Modulus_Exp.
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{ CS4: Digital Transformation-Experiment Setup

R&D-Home | Formulations | Properties & Data Files | sAl Home Page | sAl Data Analysis = sAl Model

Preliminary Material Science Analyses of the Formulations and Al Predictions
General Info

I n t u ge nt e P I Project / Study Name  Test Experiment

Project ID: 15 Study Type | R&D Study Designed by | Asjad

Descriptors # #2 #3 #4 #5 #6 #7

Weights and Ratios
. A Side - PEW of Iso Side Materials 39.62/41.94

Date of Experiments: |5,:1 5/2023 fis) Related Product | p123 - Product 123 ¥ Conducted by | Asjad B Side - PBW of Polyol Side Materials 100.00| 100.00
A+B Side - PBW Total of all Materials 139.62)141.94

C a I C u I a te S ke A (Iso) side - % of total Formulation 28.38|29.55
71.62|70.45

B (Polyol) side - % of total Formulation

Formulation Details

A Side - |se Side Materials - Properties
NCO Index (NCO Equivs per 100 Equivs of Active H) #3 #4 #5 #6 #8 Average NCO Content 29.89

#7
%5 % |95 £ |95 95 Average Equivalent Wt 140.53

material science

Side A (Iso Side) Material Type % NCO Func. #3 #4 #5 #6 #7 #8
ISONATE M 340 modified pure MDI MDI-Mod. 26.3 21

ISONATE OP 20 Pure MDI MDI 33.475 2

B Side - Polyol Side Materials - Properties
Average OH # of all active H in Polyol Side 166.51|176.26
Average OH # of Polyols 36.89|47.81
Average Equivalent Wt of Palyols 1520.86/1173.43

parameters and

Hard Segment Properties
Percent in Polymer 36.35/37.59
Solubility Parameter [(MPa)*1/2] 24.54)24.55
Glass Transition Temp. [K] 403.25/404.88

Add a Material in Side A ‘ | Delete Selected Material in Side A

.
p re d I CtS IVI O d u I u S Side B (Polyol Side) Materials Type OH# Soft Segment Properties

OIS - polyo! 27 Percent in Polymer 63.6562.41

VORANOL 230-056 Polyol 56 Solubility Parameter [(MPa)*1/2] 19.65/19.51
1,4-BUTANEDIOL Chain Extender Glass Transition Temp. [K] 196.75/198.39

using Al model as

Predicted Young's Modulus of Polymer (MPa) 7.93|19.67
95% Confidence Limit 4.35/6.09
11.51)13.25

. L]
e n g I n e e rS d e S I g n Only materials with different PBWs in Fromulations #1 and #2 will be

dered as Fact: DOE. All Oth terials will be kept tant.
| Add a Material in Side B ‘ | Delete Selected Material in Side B consICErac as ractors in e matenals wi epl constan
Max. # of Factor Materials is 4.

new formulations

Data Saved at 10:04:18:PM
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4 CS4: Digital Transformation-Experimental / Predicted Data

R&D-Home | Formulations | Properties & Data Files | sAl Home Page | sAl Data Analysis = sAl Model

.
E X p e r I l I l e n ta I Properties of Elastomeric Polyurethanes Enter Measured Values Predicted Values
Property #2 #3 #4 #5 m\#ﬁi

Hardness ShA 50
Tensile strength [Mpa] 25

Tensile modulus [Mpa]

results are —
Abrasion resistance DIN 53516 [mm3] 50

Compression set 70 H @ 212°F [%]
Compression set 70 H @ -4°F [%]

Aging 7 days @ 212°F - Tensile strength [%]
Aging 7 days @ 212°F - Elongation [%]

CO I I ected a n d Aging 7 days @ 212°F - Hardness ShA

compared against [Ere——""

Form. # Note
Base Case
Test 1

predictions

@|~o v | s |w || =

Foamat & Other Data Files (*** Enter or paste the file path in the cell. Double Click on the cell to use File Dialogbox ***)
Data / Flle Type #1 #2 #3
FTIR Spectra C:\Users\Asjad\Desktop\Predict
TGA CA\Users\Asjad\Desktop\Case &
Foamat Data (.csv)

Data Saved at 10:04:18:PM
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CS4.

Experimental
data collected
in the past is
analyzed for

relationships

intugent

R&D-Home | Formulations | Properties & Data Files = sAl Home Page  sAl Data Analysis | sAl Model

General Info Data Source

Browse for Data File

Database [D: 32 Predicted Property Use SQL Query for | Mfg. Real Life Data

Data/Model Name |Mfg Real Life Data

Upload Data Data Source | 5QL Query

Given Dataset

X1
0.620

igital Transformation-Historical Data

Relationships

0.605

0.641

0.804

0.028

0.870

0478

0.641

0482

0.529

0.830

0.790

0.620

0.743

0.906

0.862

n772

Correlation Factors

Variables
¥

Average
0.5329

Correlation
1.0000

X1

0.5683

-03967

x4

04317

-0.3162

0.7141

03030

X7

0.3424

-03033

X2

0.5248

3023

03215

X3

0.4690

X5

0.4208

X6

03867

04442

0.5505

0.5033

04354

Data Saved at 09:41:52:PM
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Historical data
is used to train
Al models and

validate them

intugent

R&D-Home | Formulations | Properties & Data Files
Model Setup
Maximum # of lterations

#of Iterét'o's b/w 500
refreshing results

Convergence Tolerance |1.000E-03
Activation Function | Tanh
# of Hidden Layers |2

2 of Neurons in Input Layer

# of Neurons in Layers

Layer # Description # of Neurons
1 | Hidden Layer |14
2 ‘Hddan Layer ‘TD

# of Cross Validation Folds | 5
Fold # for Validation | q
Total # of lterations

Training Stats
# of Data Points

Total # of Weights to Train
RMS Error  1.0670E-001
Coefficient of Determination (3%) 65.66
Standard Deviation of Estimates 148
Validation Stats

# of Data Points 273

RMS Error  1.5109E-001

Train Model |

sAl Home Page

sAl Data Analysis = sAl Model

Training Dataset

Validation Dataset

T
0.5
Y_Exp.

Copy the input, output, and predicted output

Reset Model

Data Saved at 09:59:09:PM

1/19/2026
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Part 4
Other Digitalization Techniques

Rheokinetic Models for Scaleup

1ntugent 1/19/2026
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»;ﬁ Materials Paradigm / Process Domain

Property Prediction Models

* Predict properties after
Composite Properties reactions are complete (lab or
commercial scale)

* * Al & Math Models

Manufacturing Process
' * Can we complete processes
Mol. Structure Rheology / Materlfal PIete p
o2 Properties under commercial
___ &Network | Vitrification application conditions

Engineering Balances (Time-Temp.)
* Rheokinetic scaleup models

Process Simulation Models
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" Process Simulation Models

Process Scaleup Models

1. Generate lab scale data in DSC and rheometers and develop
Rheokinetic model

i. Atleast 2 dynamic DSC scans or 3 isothermal scans

ii. Atleast 1 rheology scan

2. Use Rheokinetic model with know temperature profile or with
heat transfer equations to simulate the industrial scale process

1ntugent 1/19/2026
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# DSC Scans

3 cpm - Dsc Data Page

Autocatalytic Kinetic Model

First row of data 3

__D“ - . ] ]
) E = (ky+k,a™) (1 —a)™

* Next generation models take
into account the effect of
e g vitrification (glass transition
temperature) on reaction
kinetics.

0.2

Base Line Adjustments

iy
z
H
5
@
E
z

* Researchers do not need any
background to use this
software
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# Rheology Scans

[l Intugent Rheokinetics for Epox
DAABXO. IO,

Analysis Datalnfo:  Column #sfor

Chart Navigation

3

3
&
2
g
=
2
2
s

~

Data Bounds for Modeling

End Time (3 96.70

intugent

5 CPM - Viscosity Data Page

Temperature (*0)

|\ Viscosity
\\ Data Bounds
N

50 60
Time (min)

1/19/2026

Castro & Macosko Model

at+ba
Ey Ag
NT ag — «a

n = 1o éxp

Seferis Model

Ey

el (Ksa)

1= No exp

WLF Model

—C1(T—-Ty)
C, +(T—Ty)

N ="Moexp
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' Developing Rheokinetic Model with I-Rheo

QﬁHBXOT;HT DSC Data 1 - Dsc Data Page

Analysis 7 Auto detect data columns and rows (Only for TA Instrument / Universal Analysis exported .txt files with no modification] ® Other b, .csv, or 0* file

4 Process Simulations

Choose Formulations Data Info.: Set as Default

Given Time-Temp. Profile Column #s for Time(min) |1 Temperature (°C) |2 Heat Signal (mW) |3 First row of data
usion

4 New Model Development
Props. & Database

4 Reaction Kinetics
DSC Data 1 Title DSC Data 1
DSC Data 2
DSC Data 3
DSC Data 4
DSCData s . - .
Kinetic Model P—— ; DSC Data Analysis ; Kinetics Data

4 Rheclogy o ~

Viscosity Data 1 Sample mass (mg)  |7.00 ™\, Dsc Signal I ™, Deg. CureJ
Viscosity Data 2 ™ Base Line ) R ——
Viscosity Data 3 &

Rheclogy Medel

Degree of Cure
-

e

Base Line Adjustments
Baseline Type

Staight Line

) Heat Signal (W/g)

Press the buttons below and right

dlick on the chart to choose: Time (min)

Starting Time " ! Heat of Reaction (1/g) 0.000

— e Temperature Ramp (*C/min) NaN
End Time '} I

Chart Navigation

ick-drag to pan

ick-drag on an axis to pan just that axis
LI L B B s B B S heel to zoom

-0. . i L 1} 0.1 0.2 0.3 0.4 0. click to fit axis limits to data (may be a few times)
Export Data to .csv file Time (min)
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+ Filament Winding & Pultrusion with I1-Rheo

—

“l’ Filament Winding

* Initial Viscosity: resin uptake
* Relatively slow process »

Winding Low resin

' ile i P tent
* Time-temperature profile is Ressls Y conten

know with fair certainty

C e o . * Minimum Viscosity: Wetting
* Use Rheokinetic Simulation

with given time-temperature »

profile module Poor Resin
wetting squeeze

* Optimize time-temperature profile to improve
productivity

) ‘ihtugent
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4 Conclusions

Digital Transformation can help in improving quality and speed of innovations

Digital Transformation Software are available that provide digital platform for new
innovations and process improvements

Engineer and Researchers do not need to have any background in Al, Finite
Elements, and math modeling to leverage these tools

Al and sAl models with user friendly interface can be used to predict the final
properties

Process scaleup models allow engineers to simulate industrial scale applications

ntu AL [ 1/19/2026
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‘i\ Contact Us

* Intugent
support@Intugent.com

* Asjad Shafi
Tel #: 979 285-4300
email: AsjadShafi@Intugent.com

* Dr. Ike Latham
email: IkeLatham@Intugent.com
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